

AGGIORNAMENTO PROGETTO ESECUTIVO

Rigenerazione dell'Impianto Sportivo di Bagnolo di Po ai fini della pratica sportiva e dell'inclusività degli spazi mediante rifacimento degli spogliatoi e delle aree pertinenziali esterne.

Committente:

Comune di Bagnolo di Po Piazza Marconi, 159 45022 Bagnolo di Po - RO

Data:

Ottobre 2022 Rev.01

Elaborato:

B1

DIAGNOSI ENERGETICA

PROGETTISTA OPERE TERMO-IDRO SANITARIE

Ing. Jacopo Griguolo

Ordine degli Ingegneri di Rovigo n. 16b Piazza Umberto Merlin, 23 - 45100 Rovigo info@jacopogriguolo.com

mpianto Sportivo

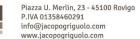
B1

RESPONSABILE DEL PROCEDIMENTO Geom. Riccardo RESINI

PREMESSA

La presente diagnosi energetica si rivolge all'edificio adibito a spogliatoi a servizio i dell'impianto sportivo del comune di Bagnolo di Po. L'area sportiva si compone di :

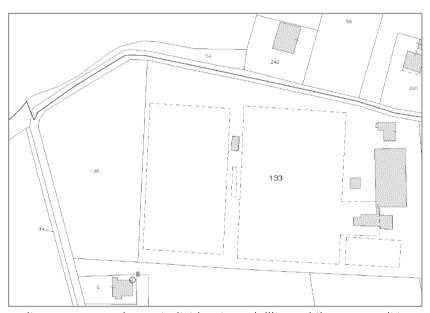
- Tensostruttura polivalente in essa sono disposti i campi da gioco per attività sportive al coperto quali Basket, Pallavolo, Calcio a cinque, Corsi di Ginnastica;
- Edificio multifunzionale con magazzino attrezzato con sala riunioni, servizi igienici, e locali di deposito;
- Area giochi inclusiva di recente realizzazione;
- Magazzino utilizzato per il deposito di materiali delle varie società sportive e delle associazioni;
- Edificio con spogliatoi, servizi igienici e docce composto di locali utilizzati sia per il calcio che per le attività della tensostruttura;
- Campo da gioco esterno da basket;
- Area spettatori con tribune e servizi igienici
- Campo da calcio


L'edificio adibito a spogliatoi è così composto da:

- Fabbricato in muratura comprendente n. 2 spogliatoi per atleti con docce e bagno, n. 1 spogliatoi per arbitro con bagno, n. 1 centrale termica, n. 1 magazzino, n. 1 ripostiglio, n. 1 servizio igienico accessibile dall'esterno con antibagno e bagno;
- Struttura in moduli prefabbricati comprendenti n. 2 spogliatoi con antibagno, bagno, docce e n. 1 ripostiglio;
- Tunnel di collegamento tra tensostruttura, spogliatoi in muratura e spogliatoi in moduli prefabbricati.

La struttura risulta riscaldata mediante impianto a ventilconvettori idronici a basamento e a parete alta con generatore di calore a combustione tradizionale con potenza nominale di 44 kW. La produzione di acqua calda sanitaria è affidata al medesimo generatore integrato con un sistema termico di pannelli solari. Infine, risulta installato sull'edificio un impianto fotovoltaico per la produzione di energia elettrica.

Obbiettivo della diagnosi è quello di individuare gli interventi utili ad efficientare energeticamente l'edificio al fine di una trasformazione dello stesso in edificio ad energia quasi zero N-zeb.



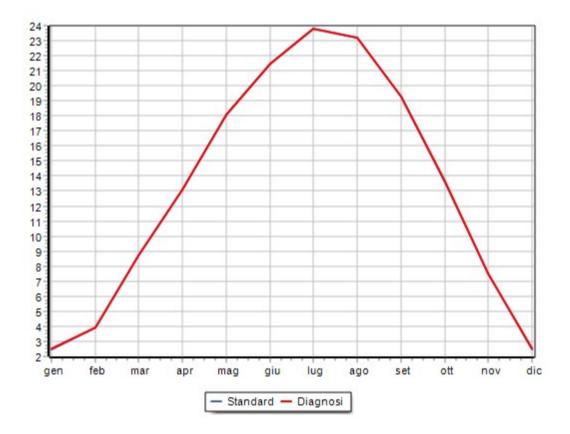
INFORMAZIONI GENERALI RELATIVI ALL'EDIFICIO

Dati catastali

Sezione: u Foglio: 8 Particella: 133

Estratto di mappa catastale con individuazione dell'immobile oggetto di intervento

Edificio sito in via Napoleonica nel Comune	di Bagnolo di Po
•	o di edifici) in base alla categoria di cui all'articolo 3 del DPR 26 agosto
1993, n.412	
Edificio adibito a servizio di supporto alle at	tività sportive
Numero unità abitative:	1
Superficie utile riscaldata	199.962 m ²
Superficie disperdente lorda	704.4 m ²
Volume lordo riscaldato	632.70 m ³
Rapporto S/V	1.11 m ⁻¹



PARAMETRI CLIMATICI

Temperature medie mensili (°C)

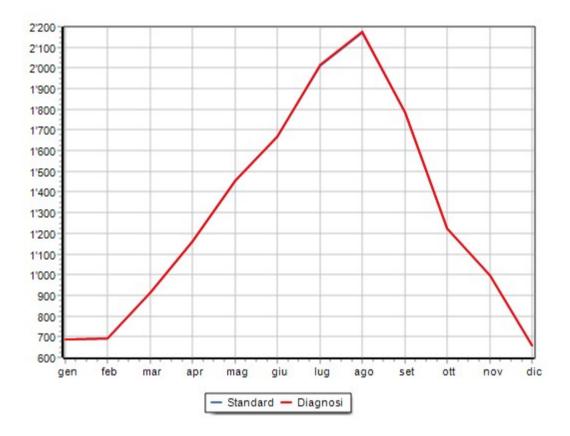
Valutazio	ne in con	dizioni ST.	ANDARD								
GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
2.5	3.9	8.7	13.1	18.1	21.5	23.8	23.2	19.3	13.6	7.5	2.5

Valu	Valutazione in condizioni di DIAGNOSI ENERGETICA												
G	iΕN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC	
	2.5	3.9	8.7	13.1	18.1	21.5	23.8	23.2	19.3	13.6	7.5	2.5	

Irradianza media mensile (W/m2)

aaiaiiza iiic	a.a	- (• • <i>,</i> · · · <i>– ,</i>										
Valutazione ir	Valutazione in condizioni STANDARD											
GEN FEB MAR APR MAG GIU LUG AGO SET OTT NOV DIC												
Diretta	2.4	4.4	6.9	10.4	13.4	16.3	15.9	11.0	8.9	4.2	2.0	1.7
Diffusa	2.0	3.1	4.9	6.5	8.6	8.5	8.3	7.9	6.0	3.9	2.3	2.0

Valutazione ir	Valutazione in condizioni di DIAGNOSI ENERGETICA											
	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
Diretta	2.4	4.4	6.9	10.4	13.4	16.3	15.9	11.0	8.9	4.2	2.0	1.7
Diffusa	2.0	3.1	4.9	6.5	8.6	8.5	8.3	7.9	6.0	3.9	2.3	2.0



Pressione parziale di vapore esterna (Pa)

Valutazion	e in condizi	oni STANDA	RD								
GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
685	691	914	1'160	1'458	1'668	2'014	2'174	1'784	1'225	995	658

Valutazion	e in condizi	oni di DIAGI	NOSI ENEF	RGETICA							
GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
685	691	914	1'160	1'458	1'668	2'014	2'174	1'784	1'225	995	658

DATI TECNICI E COSTRUTTIVI DELL'EDIFICIO

Edificio: Spogliatoi a servizio dell'impianto sportivo di Bagnolo di Po

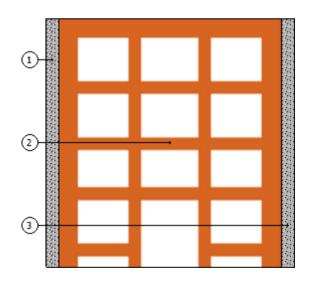
STRUTTURE DISPERDENTI

Struttura	A _{tot} [m ²]	U [W/m²K]	Immagine
PARETE ESTERNA MURATURA	53.984	0.918	
PARETE SANDWICH	45.009	0.647	
PARETE LAMIERA SEMPLICE	62.682	5.880	
SOLAIO INTERNO	78.114	1.796	

COPERTURA PREFABBRICATO	121.844	0.660	
BASAMENTO PREFABBRICATO	121.844	1.480	
BASAMENTO	78.118	1.258	
PORTA LAMIERA	3.220	5.880	
FINESTRA PRE-FAB 40X40	0.320	4.734	

FINESTRA PRE-FAB 90X90	1.620	4.552	
FINESTRA 60X80	1.920	4.601	
FINESTRE CORRIDOIO	50.400	4.544	
FINESTRA ESTERNA 200X100	2.000	4.500	

DETTAGLIO DELLE STRUTTURE DISPERDENTI

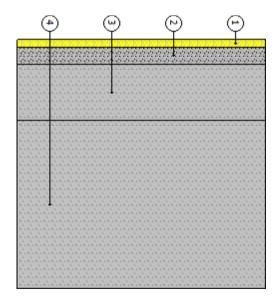

PARETE ESTERNA MURATURA

N	Descrizione dall'interno verso l'esterno	Spessore [cm]		C [W/m²K]	δ [kg/m³]	$\delta_p \times 10^{12}$ [kg/msPa	R [m²K/W]
1	Cemento e sabbia	1.5	1.000		1'800	19	0.015
2	Mattoni forati (800 kg/m³) spessore 250	25.0		1.124	800	28	0.890
3	Cemento e sabbia	1.5	1.000		1'800	19	0.015
Spe	ssore totale	28.0					<u> </u>

		Resistenza superficiale interna	0.130
		Resistenza superficiale esterna	0.040
Trasmittanza termica [W/m²K]	0.918	Resistenza termica totale	1.090

Struttura esterna che delimita locali non riscaldati	
Trasmittanza [W/m²K]	0.918
Valore limite [W/m²K]	
Trasmittanza termica periodica Y _{IE} [W/m²K]	0.343
Valore limite [W/m²K]	0.100
Sfasamento [h]	9.278
Smorzamento	0.374
Capacità termica [kJ/m²K]	54.153

Massa superficiale: 200.00 kg/m²

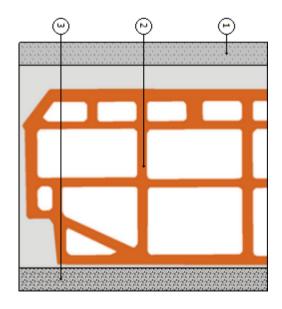

BASAMENTO

N	Descrizione dall'alto verso il basso	Spessore [cm]	λ [W/mK]	C [W/m²K]	δ [kg/m³]	$\delta_p \times 10^{12}$ [kg/msPa	R [m²K/W]
1	Pavimentazione interna - gres	1.5	1.470		1'700	28	0.010
2	Malta di cemento	3.0	1.400		2'000	9	0.021
3	Calcestruzzo alleggerito (1200 kg/m³)	10.0	0.330		1'200	2	0.303
4	Ghiaia grossa senza argilla con umidità del 5%	30.0	1.200		1'700	39	0.250
Spe	essore totale	44.5					

		Resistenza superficiale interna	0.170
		Resistenza superficiale esterna	0.040
Trasmittanza termica [W/m²K]	1.258	Resistenza termica totale	0.795

Basamento	
Trasmittanza [W/m²K]	1.258
Trasmittanza (media tra struttura e ponti termici)[W/m²K]	0.846
Valore limite [W/m²K]	
Trasmittanza termica periodica Y _{IE} [W/m²K]	0.181
Valore limite [W/m²K]	0.180
Sfasamento [h]	13.200
Smorzamento	0.144
Capacità termica [kJ/m²K]	58.857

Massa superficiale: 655.50 kg/m²

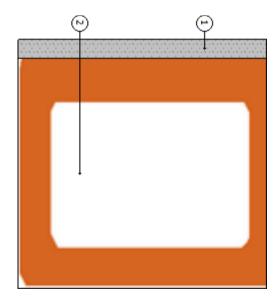

SOLAIO INTERNO VERSO SOTTOTETTO

N	Descrizione dall'alto verso il basso	Spessore [cm]	λ [W/mK]	C [W/m²K]	δ [kg/m³]	$\delta_p \times 10^{12}$ [kg/msPa	
1	Massetto in calcestruzzo alleggerito (900 kg/m³)	2.0	0.580		900	2	0.034
2	Soletta (blocchi in laterizio + travetti in calcestruzzo) 160 + malta di cemento 20	18.0		3.333	1'022	21	0.300
3	Malta di calce o di calce e cemento	2.0	0.900		1'800	9	0.022
Spe	essore totale	22.0					

		Resistenza superficiale interna	0.100
		Resistenza superficiale esterna	0.100
Trasmittanza termica [W/m²K]	1.796	Resistenza termica totale	0.557

Struttura orizzontale interna	
Trasmittanza [W/m²K]	1.796
Trasmittanza (media tra struttura e ponti termici)[W/m²K]	1.034
Valore limite [W/m²K]	
Trasmittanza termica periodica Y _{IE} [W/m²K]	1.003
Valore limite [W/m²K]	
Sfasamento [h]	6.111
Smorzamento	0.558
Capacità termica [kJ/m²K]	75.649

Massa superficiale: 201.96 kg/m²

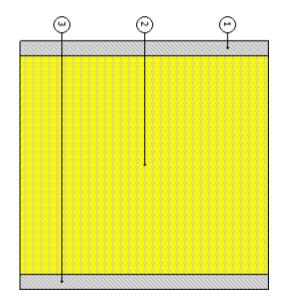

COPERTURA MURETTI E TAVELLONI

N	Descrizione dall'alto verso il basso	Spessore [cm]		C [W/m²K]		$\delta_p \times 10^{12}$ [kg/msPa	
1	Bitume: feltro/foglio	0.5	0.230		1'100	0	0.022
2	Tavellone per strutture orizzontali (250*60*1200) spessore 60	6.0		7.143	617	21	0.140
Spes	ssore totale	6.5					

		Resistenza superficiale interna	0.100
		Resistenza superficiale esterna	0.040
Trasmittanza termica [W/m²K]	3.314	Resistenza termica totale	0.302

Struttura esterna che delimita locali non riscaldati	
Trasmittanza [W/m²K]	3.314
Valore limite [W/m²K]	
Trasmittanza termica periodica Y _{IE} [W/m²K]	3.278
Valore limite [W/m²K]	0.180
Sfasamento [h]	0.768
Smorzamento	0.989
Capacità termica [kJ/m²K]	16.911

Massa superficiale: 42.52 kg/m²

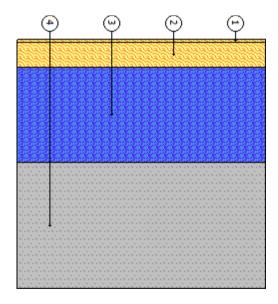

COPERTURA PREFABBRICATO

N	Descrizione dall'alto verso il basso	Spessore [cm]		C [W/m²K]	δ [kg/m³]	$\delta_p \times 10^{12}$ [kg/msPa	R [m²K/W]
1	Acciaio	0.3	52.000		7'800	0	0.000
2	Poliuretano in lastre ricavate da blocchi (40 kg/m³)	4.4	0.032		40	2	1.375
3	Acciaio	0.3	52.000		7'800	0	0.000
Spe	essore totale	5.0					

		Resistenza superficiale interna	0.100
		Resistenza superficiale esterna	0.040
Trasmittanza termica [W/m²K]	0.660	Resistenza termica totale	1.515

Copertura	
Trasmittanza [W/m²K]	0.660
Trasmittanza (media tra struttura e ponti termici)[W/m²K]	1.034
Valore limite [W/m²K]	
Trasmittanza termica periodica Y _{IE} [W/m²K]	0.657
Valore limite [W/m²K]	0.180
Sfasamento [h]	0.561
Smorzamento	0.996
Capacità termica [kJ/m²K]	11.176

Massa superficiale: 48.56 kg/m²

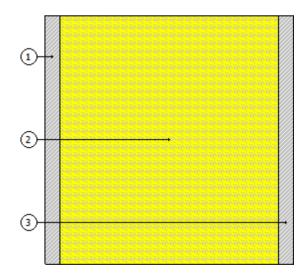

BASAMENTO PREFABBRICATO

N	Descrizione dall'alto verso il basso	Spessore [cm]	λ [W/mK]	C [W/m²K]	δ [kg/m³]	$\delta_p \times 10^{12}$ [kg/msPa	R [m²K/W]
1	Linoleum	0.4	0.170		1'200	0	0.024
2	Truciolato con leganti di cemento	4.0	0.230		1'200	4	0.174
3	Aria intercapedine flusso ascendente 150 mm	15.0		6.123	1	193	0.163
4	Calcestruzzo armato (getto)	20.0	1.910		2'400	1	0.105
Spes	ssore totale	39.4					

		Resistenza superficiale interna	0.170
		Resistenza superficiale esterna	0.040
Trasmittanza termica [W/m²K]	1.480	Resistenza termica totale	0.675

Basamento	
Trasmittanza [W/m²K]	1.480
Trasmittanza (media tra struttura e ponti termici)[W/m²K]	0.846
Valore limite [W/m²K]	
Trasmittanza termica periodica Y _{IE} [W/m²K]	0.467
Valore limite [W/m²K]	0.180
Sfasamento [h]	8.858
Smorzamento	0.315
Capacità termica [kJ/m²K]	44.664

Massa superficiale: 532.98 kg/m²

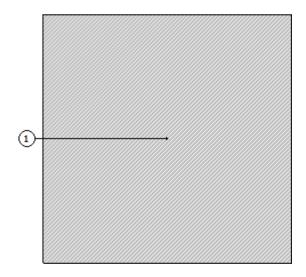

PARETE SANDWICH

N	Descrizione dall'interno verso l'esterno	Spessore [cm]	λ [W/mK]	C [W/m²K]		$\delta_p \times 10^{12}$ [kg/msPa	
1	Acciaio	0.3	52.000		7'800	0	0.000
2	Poliuretano in lastre ricavate da blocchi (40 kg/m³)	4.4	0.032		40	2	1.375
3	Acciaio	0.3	52.000		7'800	0	0.000
Spe	essore totale	5.0				•	

	Resistenza superficiale interna	0.130
	Resistenza superficiale esterna	0.040
Trasmittanza termica [W/m²K]	0.647 Resistenza termica totale	1.545

Struttura verticale esterna	
Trasmittanza [W/m²K]	0.647
Trasmittanza (media tra struttura e ponti termici)[W/m²K]	2.766
Valore limite [W/m²K]	
Trasmittanza termica periodica Y _{IE} [W/m²K]	0.644
Valore limite [W/m²K]	0.100
Sfasamento [h]	0.641
Smorzamento	0.994
Capacità termica [kJ/m²K]	10.939

Massa superficiale: 48.56 kg/m²


PARETE LAMIERA SEMPLICE

N	Descrizione dall'interno verso l'esterno	Spessore [cm]		C [W/m²K]		$\delta_{\rm p}$ x 10^{12} [kg/msPa	
1	Acciaio	0.3	52.000		7'800	0	0.000
Spes	sore totale	0.3					

		Resistenza superficiale interna	0.130
		Resistenza superficiale esterna	0.040
Trasmittanza termica [W/m²K]	5.880	Resistenza termica totale	0.170

Struttura verticale esterna	
Trasmittanza [W/m²K]	5.880
Trasmittanza (media tra struttura e ponti termici)[W/m²K]	2.766
Valore limite [W/m²K]	
Trasmittanza termica periodica Y₁ɛ[W/m²K]	5.879
Valore limite [W/m²K]	0.100
Sfasamento [h]	0.090
Smorzamento	1.000
Capacità termica [kJ/m²K]	2.478

Massa superficiale: 23.40 kg/m²

CHIUSURE TECNICHE

Caratteristiche termiche delle chiusure tecniche trasparenti

Descrizione	A _g m²	A _f m²	l _g m	U _g W/m² K	U _f W/m² K	Ψ W/mK	U _w W/m² K	U _{ws} W/m² K	U _{lim} W/m² K	Classe perm.
FINESTRA PRE-FAB 40X40	0.09	0.07	1.20	5.70	7.00	0.00	6.27	4.73		0
FINESTRA PRE-FAB 90X90	0.64	0.17	3.20	5.70	7.00	0.00	5.97	4.55		0
FINESTRA 60X80	0.35	0.13	2.40	5.70	7.00	0.00	6.05	4.60		0
FINESTRE CORRIDOIO	0.84	0.21	4.00	5.70	7.00	0.00	5.96	4.54		0
FINESTRA ESTERNA 200X100	1.71	0.29	5.60	5.70	7.00	0.00	5.89	4.50		0
PORTA FINESTRA EXT 130 X 230	0.26	0.97	3.00	5.70	7.00	0.00	5.90	5.90		0
PORTA FINESTRA EXT 100 X 230	0.72	0.57	3.40	5.70	7.00	0.00	5.68	5.68		0

Caratteristiche termiche delle chiusure tecniche opache

Descrizione	U [W/m²K]	U _{lim} [W/m²K]	Classe di permeabilit à
PORTA LAMIERA	5.88		0

Fattore di trasmissione solare totale

Descrizione	Orientamento	g _{gl+sh} [W/m²K]	g _{gl+sh,lim} [W/m²K]
FINESTRA PRE-FAB 40X40	Verticale	0.84	0.35
FINESTRA PRE-FAB 90X90	Verticale	0.84	0.35
FINESTRA 60X80	Verticale	0.84	0.35
FINESTRE CORRIDOIO	Verticale	0.84	0.35
PORTA FINESTRA EXT 130 X 230	Verticale	0.84	0.35

Legenda

A_g Area del vetro

A_f Area del telaio

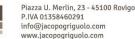
l_g Perimetro della superficie vetrata

Ug Trasmittanza termica dell'elemento vetrato

U_f Trasmittanza termica del telaio

Ψ Trasmittanza lineica (nulla in caso di vetro singolo)

Uw Trasmittanza termica totale del serramento


Uws Trasmittanza termica del serramento comprensiva delle chiusure opache

U_{lim} Trasmittanza limite

g_{gl+sh} Fattore di trasmissione solare totale

g_{gl+sh,lim} Fattore di trasmissione solare totale limite

DATI RELATIVI AGLI IMPIANTI

Impianto di riscaldamento

Sottosistema di emissione

Terminale	Descrizione	P _t emessa [W]	Immagine
Ventilconvettori	Ventilconvettori idronici con regolazione dei velocità a bordo macchina	39'141	

Sottosistema di regolazione

Regolazione	Descrizione	Immagine
Solo per singolo ambiente	Sistema di regolazione ON-OFF e regolazione velocità a bordo macchina	

Sistema di acqua calda sanitaria

Sottosistema di generazione

Generatore	Descrizione	Pot nominale [kW]	Immagine
Generatore Combustione UNICAL – RECAL 38	Caldaia a combustione con combustibile Gas Metano	44.00	

Solare termico

	Caratteristiche	Immagine
Descrizione	Collettori solari sottovuoto costituiti	
	da una serie di tubi in vetro	
	borosilicato a doppia intercapedine,	
	saldati all'estremità, al cui interno è	
	provocato il vuoto. Laminato	
	riflettente a bassa appositamente	
	realizzato per riflettere con	
	percentuale superiori al 90% della luce	
	totale, sfruttando il sistema CPC .	
	Caratteristiche tecniche del collettore:	
	N° di tubi:21; Rendimento (Oa):	
	63,20%; Coefficiente di perdita	
	termica (1 a): 0,936 W/m2K;	
	Coefficiente di perdita termica (2a):	
	0,0076 W/m2K; Pressione massima	
	d'esercizio: 10,0 bar; Portata ottimale:	
	0,6 l/min m2; Peso a vuoto: 67,5 kg;	
	Contenuto di liquido: 3,07 I; Superficie	
	totale: 3, 76 m2; Superficie netta: 3,30	
	m2. Dimensioni:Larghezza (con	
	raccordi): 2348 (2428) mm; Altezza:	
	1605 mm; Profondità: 140 mm.	
Superficie captante	22.56 m ²	
Tipo di collettore	Non vetrato	
Inclinazione	60 °	
Orientamento	0 °	

<u>Accumulo</u>

Servizio	Descrizione	Immagine
Solo acqua calda sanitaria	ACCUMULATORE SOLARE 1500 COIBENTATO CON MATERIALE SP. 5 CM	

Fotovoltaico

	Caratteristiche	Immagine
Descrizione	Impianto fotovoltaico integrato nella falda inclinato di	
	17° e orientato a SUD. Potenza di picco 2.96 kW.	
Superficie captante	24.3 m ²	
Tipo di pannello	Silicio monocristallino	
Potenza di picco	2.96 kWp	

CONDIZIONI DI UTILIZZO DELLA ZONA

Profilo di accensione dell'impianto

Funzionamento dell'impianto: Funzionamento continuo senza attenuazione

Temperatura di set-point invernale: 20 °C Temperatura di set-point estiva: 26 °C

Occupazione e apparecchiature

Occupanti

Ore medie di occupazione giornaliera: 4 h

<u>Apparecchiature</u>

Ore medie di accensione giornaliera: 4 h

Fattore di riduzione: 0.17

Apporti solari

Fattore di riduzione delle chiusure oscuranti

h	00.00-04.00	04.00-08.00	08.00-12.00	12.00-16.00	16.00-20.00	20.00-00.00
Mese						
Gennaio	0.6	0.6	0.6	0.6	0.6	0.6
Febbraio	0.6	0.6	0.6	0.6	0.6	0.6
Marzo	0.6	0.6	0.6	0.6	0.6	0.6
Aprile	0.6	0.6	0.6	0.6	0.6	0.6
Maggio	0.6	0.6	0.6	0.6	0.6	0.6
Giugno	0.6	0.6	0.6	0.6	0.6	0.6
Luglio	0.6	0.6	0.6	0.6	0.6	0.6
Agosto	0.6	0.6	0.6	0.6	0.6	0.6
Settembre	0.6	0.6	0.6	0.6	0.6	0.6
Ottobre	0.6	0.6	0.6	0.6	0.6	0.6
Novembre	0.6	0.6	0.6	0.6	0.6	0.6
Dicembre	0.6	0.6	0.6	0.6	0.6	0.6

Dati illuminazione

Tipo di lampada	Numero	Potenza W
LAMPADA A NEON	20	35

Ore medie di accensione giornaliere

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
4	4	4	3	3	2	2	2	3	4	4	4

Acqua Calda Sanitaria

Volume richiesto: 80 l/g

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Temp. erog.	40	40	40	40	40	40	40	40	40	40	40	40
Temp. imm.	13.1	13.1	13.1	13.1	13.1	13.1	13.1	13.1	13.1	13.1	13.1	13.1

INTERVENTI DI MIGLIORAMENTO

Introduzione

Al fine di efficientare energeticamente l'edificio di seguito vengono analizzati in ordine di importanza alcuni interventi migliorativi. L'edificio, nonostante sia dotato di sistemi per la produzione di energia di tipo rinnovabile (quale fotovoltaico e solare termico) vede molteplici carenze dal punto di vista del contenimento energetico, sia dal punto di vista dell'involucro esterno che dal punto di vista impiantistico. Si sono quindi analizzati interventi atti a migliorare le criticità energetiche dello stabile, in particolare la sostituzione della caldaia con un sistema in pompa di calore, la coibentazione delle pareti esterne verticali, la sostituzione degli infissi e la coibentazione delle strutture controterra. Di seguito si riportano i risultati delle analisi.

INSTALLAZIONE POMPA DI CALORE

Tipo intervento	Sostituzione generatore di calore					
Costo intervento STIMATO	10'000.00 €					
Detrazioni	0.00 € in 0 anni					

		Ante int	ervento			Post inte	rvento	
Tipo generatore		generatore a combustione				ро	mpa di calore	
Vettore								
energetico				Metano			En	ergia elettrica
utilizzato								
Servizio		Riscaldamento + acqua calda sanitaria			Riscaldamento +	- acqua c	alda sanitaria	
Potenza	Imve	44 kW	Гот	- kW	lmv	21.1 kW	Fat.	- kW
nominale	Inv.	44 KVV	ESI.	- KVV	IIIV.	21.1 KVV	ESI.	- KVV
Rendimento nominale/COP	Inv.	91.6	Est.	-	Inv.	4.1	Est.	-

COIBENTAZIONE PARETI OPACHE ESTERNE

Tipo intervento	Coibentazione delle strutture opache verticali rivolte verso l'esterno		
Costo intervento STIMATO	24'000.00 €		
Detrazioni	0.00€	in	0 anni

Elenco delle strutture interessate dall'intervento

Struttura	A _{tot} intervento[m ²]	Uante intervento [W/m²K]	Upost intervento [W/m²K]
PARETE SANDWICH	45.01	0.647	0.102
PARETE LAMIERA	62.68	5.880	0.118
SEMPLICE	02.00	3.000	0.118
PARETE ESTERNA	C1 2C	0.019	0.107
MURATURA	61.36	0.918	0.107

SOSTITUZIONE DEGLI INFISSI

Tipo intervento	Sostituzione delle chiusure trasparenti comprensive di infissi rivolte verso l'esterno		
Costo intervento STIMATO	25'000.00 €		
Detrazioni	0.00€	in	0 anni

Elenco degli infissi interessati dall'intervento

FINESTRA PRE-FAB 40X40	Ante intervento	Post intervento
Area	0.16	0.16
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	6.269 W/m ² K	1.1 W/m ² K

FINESTRA PRE-FAB 40X40	Ante intervento	Post intervento
Area	0.16	0.16
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	6.269 W/m ² K	1.1 W/m²K

FINESTRA PRE-FAB 90X90	Ante intervento	Post intervento
Area	0.81	0.81
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.973 W/m ² K	1.1 W/m ² K

FINESTRA PRE-FAB 90X90	Ante intervento	Post intervento
Area	0.81	0.81
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.973 W/m ² K	1.1 W/m²K

FINESTRA 60X80	Ante intervento	Post intervento
Area	0.48	0.48
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	6.052 W/m ² K	1.1 W/m ² K

FINESTRA 60X80	Ante intervento	Post intervento
Area	0.48	0.48
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	6.052 W/m ² K	$1.1 \text{ W/m}^2\text{K}$

FINESTRA 60X80	Ante intervento	Post intervento
Area	0.48	0.48
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	6.052 W/m ² K	1.1 W/m ² K

FINESTRA 60X80	Ante intervento	Post intervento
Area	0.48	0.48
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	6.052 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	$1.1 \text{ W/m}^2\text{K}$

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	$1.1 \text{ W/m}^2\text{K}$

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m²K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	$1.1 \text{ W/m}^2\text{K}$

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	$1.1 \text{ W/m}^2\text{K}$

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRE CORRIDOIO	Ante intervento	Post intervento
Area	1.05	1.05
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.96 W/m ² K	1.1 W/m ² K

FINESTRA 200X100	Ante intervento	Post intervento
Area	2	2
Struttura del vetro	Vetro singolo verticale interno	
Trasmittanza vetro	3.8 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	4.264 W/m ² K	1.1 W/m ² K

FINESTRA 200X100	Ante intervento	Post intervento
Area	2	2
Struttura del vetro	Vetro singolo verticale interno	
Trasmittanza vetro	3.8 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	4.264 W/m ² K	1.1 W/m ² K

FINESTRA 200X100	Ante intervento	Post intervento
Area	2	2
Struttura del vetro	Vetro singolo verticale interno	
Trasmittanza vetro	$3.8 \text{ W/m}^2\text{K}$	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	4.264 W/m ² K	1.1 W/m ² K

FINESTRA 200X100	Ante intervento	Post intervento	
Area	2	2	
Struttura del vetro	Vetro singolo verticale interno		
Trasmittanza vetro	3.8 W/m ² K		
Trasmittanza telaio	7 W/m ² K		
Trasmittanza finestra	4.264 W/m ² K	1.1 W/m ² K	

PORTA FINESTRA EXT 130 X 230	Ante intervento	Post intervento	
Area	2.99	2.99	
Struttura del vetro	Vetro singolo verticale		
Trasmittanza vetro	5.7 W/m ² K		
Trasmittanza telaio	7 W/m ² K		
Trasmittanza finestra	5.896 W/m ² K	1.1 W/m ² K	

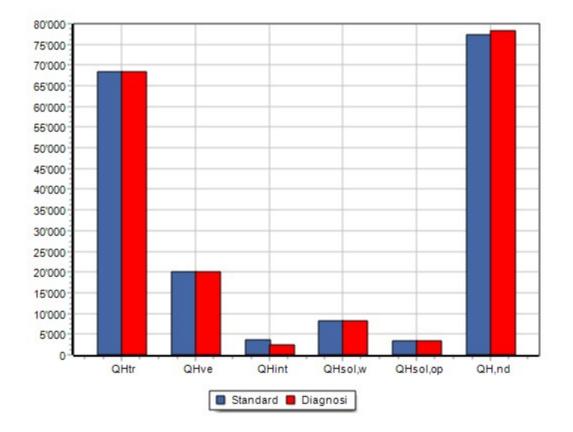
PORTA FINESTRA EXT 100 X 230	Ante intervento	Post intervento
Area	2.3	2.3
Struttura del vetro	Vetro singolo verticale	
Trasmittanza vetro	5.7 W/m ² K	
Trasmittanza telaio	7 W/m ² K	
Trasmittanza finestra	5.679 W/m ² K	1.1 W/m ² K

COIBENTAZIONE DEI BASAMENTI

Tipo intervento	Coibentazione delle strutture opache orizzontali rivolte verso l'esterno (pavimenti esterni)			
Costo intervento	2'500.00 €			
Detrazioni	0.00 € in 0 anni			

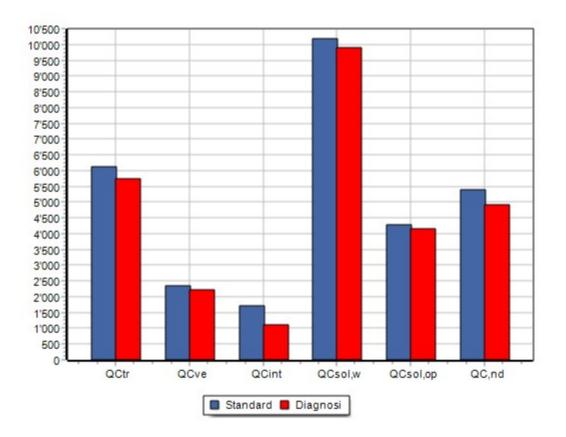
Elenco delle strutture interessate dall'intervento

Struttura	A _{tot} intervento[m ²]	Uante intervento [W/m²K]	Upost intervento [W/m²K]
BASAMENTO	121.84	1.480	0.204
PREFABBRICATO	121.84	1.480	0.204
BASAMENTO	78.12	1.258	0.199



PRINCIPALI RISULTATI DI CALCOLO

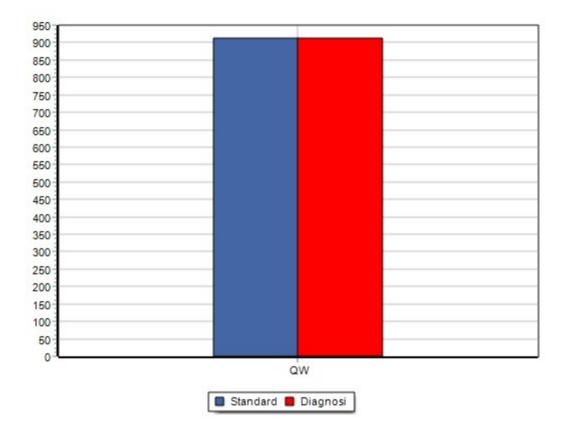
Fabbisogni relativi a: SPOGLIATOI


Fabbisogni relativi all'involucro

	Condizioni di progetto o standard	Diagnosi	% di scarto
Q _{H,tr}	68'308.13 kWh/anno	68'280.05 kWh/anno	-0.04
Q _{H,ve}	19'962.94 kWh/anno	19'954.78 kWh/anno	-0.04
Q _{H,int}	3'512.93 kWh/anno	2'341.95 kWh/anno	-33.33
Q _{H,sol,w}	8'271.26 kWh/anno	8'271.26 kWh/anno	0.00
Q _{H,sol,op}	3'385.99 kWh/anno	3'385.99 kWh/anno	0.00
Q _{H,nd}	77'272.12 kWh/anno	78'266.12 kWh/anno	1.29

	Condizioni di progetto o standard	Diagnosi	% di scarto
Q _{C,tr}	6'132.38 kWh/anno	5'756.69 kWh/anno	-6.13
Q _{C,ve}	2'356.83 kWh/anno	2'232.43 kWh/anno	-5.28
Q _{C,int}	1'727.67 kWh/anno	1'113.39 kWh/anno	-35.56
Q _{C,sol,w}	10'190.13 kWh/anno	9'896.00 kWh/anno	-2.89
Q _{C,sol,op}	4'273.06 kWh/anno	4'149.08 kWh/anno	-2.90
Q _{C,nd}	5'392.21 kWh/anno	4'910.35 kWh/anno	-8.94

Riscaldamento: fabbisogni di energia primaria e rendimenti


	Condizioni di progetto o standard	Diagnosi	% di scarto
Giorni di	183	183	0.00
riscaldamento	190	133	
Q _{p,nren,H}	113'351.48 kWh/anno	114'430.82 kWh/anno	0.95
Q _{p,ren,H}	1'255.11 kWh/anno	1'338.12 kWh/anno	6.61
Q _{p,tot,H}	114'606.59 kWh/anno	115'768.95 kWh/anno	1.01
	68.17	68.40	0.33

Acqua calda sanitaria: fabbisogni di energia termica utile, primaria e rendimenti

	Condizioni di progetto o standard	Diagnosi	% di scarto
Q _{W,nd}	911.50 kWh/anno	912.73 kWh/anno	0.13
Q _{p,nren,W}	1'641.33 kWh/anno	1'535.67 kWh/anno	-6.44
Q _{p,ren,W}	2'367.55 kWh/anno	2'397.48 kWh/anno	1.26
Q _{p,tot,W}	4'008.88 kWh/anno	3'933.14 kWh/anno	-1.89
?g,w	55.53	59.44	7.02

Illuminazione: fabbisogni di energia primaria e rendimenti

	Condizioni di progetto o standard	Diagnosi	% di scarto
Q _{p,nren,L}	5'013.72 kWh/anno	759.70 kWh/anno	-84.85
Q _{p,ren,L}	3'645.13 kWh/anno	623.02 kWh/anno	-82.91
Q _{p,tot,L}	8'658.85 kWh/anno	1'382.72 kWh/anno	-84.03

Legenda:

 $Q_{\text{H.tr}}$ scambio di energia termica per trasmissione nel caso di riscaldamento

 $Q_{\text{H,ve}}$ scambio di energia termica per ventilazione nel caso di riscaldamento

 $Q_{\text{H,int}}$ apporti di energia termica dovuti a sorgenti interne nel caso di riscaldamento

 $Q_{H.sol.w}$ apporti di energia termica dovuti alla radiazione solare incidente sui componenti vetrati nel caso di riscaldamento

Q_{H,sol,op} apporti di energia termica dovuti alla radiazione solare incidente sui componenti opachi nel caso di riscaldamento

fabbisogno ideale di energia termica per riscaldamento $Q_{H,nd}$

 $Q_{C.tr}$ scambio di energia termica per trasmissione nel caso di raffrescamento scambio di energia termica per ventilazione nel caso di raffrescamento $Q_{C,ve}$

apporti di energia termica dovuti a sorgenti interne nel caso di raffrescamento $Q_{C,int}$

apporti di energia termica dovuti alla radiazione solare incidente sui componenti vetrati nel caso di raffrescamento

Q_{C.sol.on} apporti di energia termica dovuti alla radiazione solare incidente sui componenti opachi nel caso di raffrescamento

fabbisogno ideale di energia termica per raffrescamento $Q_{C,nd}$

Q_{p,nren,H} fabbisogno di energia primaria non rinnovabile per riscaldamento Q_{p,ren,H} fabbisogno di energia primaria rinnovabile per riscaldamento

fabbisogno di energia primaria totale per riscaldamento $Q_{p,tot,H}$

rendimento globale medio stagionale nel caso di riscaldamento ?g.H Q_{p,nren,C} fabbisogno di energia primaria non rinnovabile per raffrescamento Q_{p,ren,C} fabbisogno di energia primaria rinnovabile per raffrescamento fabbisogno di energia primaria totale per raffrescamento $Q_{p,tot,C}$

rendimento globale medio stagionale nel caso di raffrescamento ?g.C fabbisogno di energia primaria non rinnovabile per illuminazione $Q_{p,ren,L}$ fabbisogno di energia primaria rinnovabile per illuminazione fabbisogno di energia primaria totale per illuminazione $Q_{p,tot,l}$

Interventi migliorativi

INSTALLAZIONE POMPA DI CALORE

		Condizioni di progetto o standard	Diagnosi	% di scarto
EP _{H,nren}	[kWh/m²]	326.14	326.44	0.09
EP _{W,nren}	[kWh/m²]	3.14	2.61	-16.82
EP _{C,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{V,nren}	[kWh/m ²]	0.00	0.00	0.00
EP _{L,nren}	[kWh/m²]	25.07	3.80	-84.85
EP _{T,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{gl,nren}	[kWh/m²]	354.35	332.85	-6.07
CO ₂ prodotta	a [kg/m²]	78.72	73.94	-6.07
CO₂ risparmi	ata [kg/m²]	40.56	41.52	
Tempo di rite	orno [anni]	0	0	

		Pre-intervento	Post-intervento	% Risparmio energetico
EP _{H,nren}	[kWh/m²]	572.26	326.44	42.96
EP _{W,nren}	[kWh/m²]	7.68	2.61	65.99
EP _{C,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{V,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{L,nren}	[kWh/m²]	3.80	3.80	0.00
EP _{T,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{gl,nren}	[kWh/m²]	583.74	332.85	42.98

		Pre-intervento	Post-intervento	% Incremento
EP _{H,ren}	[kWh/m²]	6.69	313.54	4'585.45
EP _{w,ren}	[kWh/m²]	11.99	13.03	8.67
EP _{C,ren}	[kWh/m²]	0.00	0.00	0.00
EP _{V,ren}	[kWh/m²]	0.00	0.00	0.00
EP _{L,ren}	[kWh/m²]	3.12	3.12	0.00
EP _{T,ren}	[kWh/m²]	0.00	0.00	0.00
EP _{gl,ren}	[kWh/m²]	21.80	329.69	1'412.53

COIBENTAZIONE PARETI OPACHE ESTERNE

		Condizioni di progetto o standard	Diagnosi	% di scarto
EP _{H,nren}	[kWh/m²]	391.05	396.46	1.38
EP _{W,nren}	[kWh/m²]	8.23	7.71	-6.43
EP _{C,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{V,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{L,nren}	[kWh/m²]	25.07	3.80	-84.85
EP _{T,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{gl,nren}	[kWh/m²]	424.36	407.96	-3.86
CO ₂ prodotta	a [kg/m²]	84.67	80.85	-4.51
CO ₂ risparmi	ata [kg/m²]	34.61	34.61	
Tempo di rito	orno [anni]	7	7	

		Pre-intervento	Post-intervento	% Risparmio energetico
EP _{H,nren}	[kWh/m²]	572.26	396.46	30.72
EP _{W,nren}	[kWh/m²]	7.68	7.71	-0.34
EP _{C,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{V,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{L,nren}	[kWh/m²]	3.80	3.80	0.00
EP _{T,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{gl,nren}	[kWh/m²]	583.74	407.96	30.11

		Pre-intervento	Post-intervento	% Incremento
EP _{H,ren}	[kWh/m²]	6.69	6.66	-0.44
EP _{w,ren}	[kWh/m²]	11.99	11.99	0.00
EP _{C,ren}	[kWh/m²]	0.00	0.00	0.00
EP _{V,ren}	[kWh/m²]	0.00	0.00	0.00
EP _{L,ren}	[kWh/m²]	3.12	3.12	0.00
EP _{T,ren}	[kWh/m²]	0.00	0.00	0.00
EP _{gl,ren}	[kWh/m²]	21.80	21.77	-0.13

SOSTITUZIONE DEGLI INFISSI

		Condizioni di progetto o standard	Diagnosi	% di scarto
EP _{H,nren}	[kWh/m²]	470.28	476.65	1.36
EP _{W,nren}	[kWh/m²]	8.22	7.69	-6.41
EP _{C,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{V,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{L,nren}	[kWh/m²]	25.05	3.80	-84.84
EP _{T,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{gl,nren}	[kWh/m²]	503.55	488.14	-3.06
CO ₂ prodott	ta [kg/m²]	100.26	96.64	-3.61
CO₂ risparm	niata [kg/m²]	19.02	18.82	
Tempo di ri	torno [anni]	13	13	

		Pre-intervento	Post-intervento	% Risparmio energetico
EP _{H,nren}	[kWh/m²]	572.26	476.65	16.71
EP _{W,nren}	[kWh/m²]	7.68	7.69	-0.17
EP _{C,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{V,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{L,nren}	[kWh/m²]	3.80	3.80	0.00
EP _{T,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{gl,nren}	[kWh/m²]	583.74	488.14	16.38

	ī			
		Pre-intervento	Post-intervento	% Incremento
EP _{H,ren}	[kWh/m²]	6.69	6.68	-0.19
EP _{W,ren}	[kWh/m²]	11.99	11.99	0.00
EP _{C,ren}	[kWh/m²]	0.00	0.00	0.00
EP _{V,ren}	[kWh/m²]	0.00	0.00	0.00
EP _{L,ren}	[kWh/m²]	3.12	3.12	0.00
EP _{T,ren}	[kWh/m²]	0.00	0.00	0.00
EP _{gl,ren}	[kWh/m²]	21.80	21.78	-0.06

COIBENTAZIONE DEI BASAMENTI

		Condizioni di progetto o standard	Diagnosi	% di scarto
EP _{H,nren}	[kWh/m²]	510.89	516.24	1.05
EP _{W,nren}	[kWh/m²]	8.22	7.69	-6.43
EP _{C,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{V,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{L,nren}	[kWh/m²]	25.07	3.80	-84.85
EP _{T,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{gl,nren}	[kWh/m²]	544.18	527.72	-3.02
CO₂ prodot	ta [kg/m²]	108.26	104.43	-3.54
CO ₂ risparm	niata [kg/m²]	11.02	11.03	
Tempo di ri	torno [anni]	3	3	

		Pre-intervento	Post-intervento	% Risparmio energetico
EP _{H,nren}	[kWh/m²]	572.26	516.24	9.79
EP _{W,nren}	[kWh/m²]	7.68	7.69	-0.09
EP _{C,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{V,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{L,nren}	[kWh/m²]	3.80	3.80	0.00
EP _{T,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{gl,nren}	[kWh/m²]	583.74	527.72	9.60

		Pre-intervento	Post-intervento	% Incremento
EP _{H,ren}	[kWh/m²]	6.69	6.69	-0.09
EP _{w,ren}	[kWh/m²]	11.99	11.99	0.00
EP _{C,ren}	[kWh/m²]	0.00	0.00	0.00
EP _{V,ren}	[kWh/m²]	0.00	0.00	0.00
EP _{L,ren}	[kWh/m²]	3.12	3.12	0.00
EP _{T,ren}	[kWh/m²]	0.00	0.00	0.00
EP _{gl,ren}	[kWh/m²]	21.80	21.79	-0.03

Totale interventi

		Condizioni di progetto o standard	Diagnosi	% di scarto
EP _{H,nren}	[kWh/m²]	163.63	166.34	1.66
EP _{W,nren}	[kWh/m²]	3.14	2.61	-16.82
EP _{C,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{V,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{L,nren}	[kWh/m²]	25.07	3.80	-84.85
EP _{T,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{gl,nren}	[kWh/m²]	191.84	172.76	-9.95
CO ₂ prodott	a [kg/m²]	42.62	38.38	-9.95
CO ₂ risparm	iata [kg/m²]	76.66	77.08	
Tempo di rit	torno [anni]	11	11	

		Pre-intervento	Post-intervento	% Risparmio energetico
EP _{H,nren}	[kWh/m²]	572.26	166.34	70.93
EP _{W,nren}	[kWh/m²]	7.68	2.61	65.99
EP _{C,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{V,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{L,nren}	[kWh/m²]	3.80	3.80	0.00
EP _{T,nren}	[kWh/m²]	0.00	0.00	0.00
EP _{gl,nren}	[kWh/m²]	583.74	172.76	70.41

		Pre-intervento	Post-intervento	% Incremento
EP _{H,ren}	[kWh/m²]	6.69	145.70	2'077.34
EP _{W,ren}	[kWh/m²]	11.99	12.98	8.25
EP _{C,ren}	[kWh/m²]	0.00	0.00	0.00
EP _{V,ren}	[kWh/m²]	0.00	0.00	0.00
EP _{L,ren}	[kWh/m²]	3.12	3.12	0.00
EP _{T,ren}	[kWh/m²]	0.00	0.00	0.00
EP _{gl,ren}	[kWh/m²]	21.80	161.80	642.29

Legenda:

EPH,nren indice di energia primaria non rinnovabile nel caso di riscaldamento

EP_{W,nren} indice di energia primaria non rinnovabile nel caso di acqua calda sanitaria

EP_{C,nren} indice di energia primaria non rinnovabile nel caso di raffrescamento

EP_{V,nren} indice di energia primaria non rinnovabile nel caso di ventilazione

EP_{L,nren} indice di energia primaria non rinnovabile nel caso di illuminazione

EP_{gl,nren} indice di energia primaria globale non rinnovabile

EP_{H,ren} indice di energia primaria rinnovabile nel caso di riscaldamento

indice di energia primaria rinnovabile nel caso di acqua calda sanitaria $\mathsf{EP}_{\mathsf{W},\mathsf{ren}}$

indice di energia primaria rinnovabile nel caso di raffrescamento $EP_{C,ren}$

indice di energia primaria rinnovabile nel caso di ventilazione $EP_{V,ren}$

indice di energia primaria rinnovabile nel caso di illuminazione $EP_{L,ren}$

COMUNE DI Pag. 40 di 40 **BAGNOLO DI PO**

PROGETTO ESECUTIVO

CONCLUSIONE

Dalle analisi eseguite risulta che l'edificio presenta diverse criticità relative al contenimento energetico, in particolare relativamente alle strutture opache e trasparenti rivolte verso l'esterno e alla tipologia di impiantistica termica. L'applicazione organica di tutti gli interventi migliorativi previsti nelle analisi (involucro e impianto) dimostra analiticamente una forte riduzione del consumo energetico, con una percentuale di risparmio atteso pari al 70%. Al fine di efficientare energeticamente lo stabile risultano necessari una molteplicità di interventi legati all'aumento dell'isolamento termico e alla diminuzione di dispendi energetici legati all'impiantistica. Dato l'obbiettivo di trasformare l'edificio ad energia quasi zero N-zeb, considerate le difficoltà operative di intervento e i relativi costi, si consiglia operare la riqualificazione mediante demolizione e ricostruzione dell'immobile. Il recupero delle strutture esterne e il rifacimento degli impianti risultano infatti di difficile realizzazione date le caratteristiche costruttive del fabbricato. L'intervento di riqualificazione mediante ricostruzione dovrà mantenere l'impianto solare termico, attualmente efficiente e funzionante, mantenere l'impianto fotovoltaico esistente e integrarlo con nuovi pannelli al fine di soddisfare la richiesta energetica dello stabile, prevedere l'utilizzo di una pompa di calore ad alta efficienza per la climatizzazione invernale e un sistema di ricambio d'aria meccanizzato con recupero di calore oltre che a prevedere strutture opache e trasparenti altamente isolanti.

Timbro e firma del tecnico Luogo e data

Bagnolo di Po – Settembre 2020 ING. JACOPO GRIGUOLO